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Abstract. A wide range of ecological and evolutionary models predict variety in phenotype or
behavior when a population is at equilibrium. This heterogeneity can be realized in different
ways. For example, it can be realized through a complex population of individuals exhibiting
different simple behaviors, or through a simple population of individuals exhibiting complex,
varying behaviors. In some theoretical frameworks these different realizations are treated as
equivalent, but natural selection distinguishes between these two alternatives in subtle ways.
By investigating an increasingly complex series of models, from a simple fluctuating selection
model up to a finite population hawk/dove game, we explore the selective pressures which
discriminate between pure strategists, mixed at the population level, and individual mixed
strategists. Our analysis reveals some important limitations to the “ESS” framework often
employed to investigate the evolution of complex behavior.
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1. Introduction

A primary goal of many ecological and evolutionary models is to explain the
maintenance of variety in behavior or phenotype in equilibrium populations.
There are, however, several distinct ways in which variety can be realized
in a population. The first, basic distinction is between population-level and
individual-level variability. It may be that each individual has the capacity
to produce a variety of behaviors – each individual may alternate between
cautious and adventurous behaviors, for example. Alternately, the population
may consist of different types of individuals, each having the capacity to
produce only a single behavior. In the first case we have a simple population
of complex individuals; in the second we have a complex population of simple
individuals.
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It has been quite common for optimality models which address questions
about the evolution of variable behaviors to treat these possible states as
equivalent. For example, Levins (1968) uses a decision-theoretic framework
to investigate the conditions under which populations will respond to environ-
mental variability with a mixture of behaviors rather than a single cover-all or
a specialized behavior. Levins’ model does not differentiate between genetic
polymorphism and individual-level mixing of behaviors1.

A similar blurring of this distinction is found in much of evolutionary game
theory (Maynard Smith and Price 1973; Maynard Smith 1982). The original
formulations of evolutionary game theory represent diversity in behavior
with the concept of a “mixed strategy.” The basic mathematical apparatus
of evolutionary game theory does not differentiate between mixed strategies
played by individuals – such as “behave aggressively with probability P ”
– and mixtures realized by polymorphic populations of individuals playing
pure strategies. The original formulations of evolutionary game theory were
not required to make this distinction, because they assume effectively infinite
population size. In many examples of games in which a mixed strategy
is predicted, such as the Hawk-Dove game, the theoretical apparatus finds
a mixture of behaviors such that the expected payoffs for each behavior
are the same. This mixture cannot be invaded by any other single strategy.
Such a state can be realized either by each individual playing hawk with
probability P and playing dove with probability (1�P ), or it can be realized
by a polymorphism in the population where each individual always plays
the same “pure” strategy, and the proportion of the population which plays
hawk is P . Under infinite population assumptions, these two cases cannot be
distinguished by evolutionary game theory.

Thomas (1984) describes this type of model, which does not distinguish
between different realizations of the evolutionarily stable state, as “degen-
erating.” He contrasts these degenerating models with a “non-degenerating”
class of models which predict not only the evolutionarily stable state but the
evolutionarily stable strategy by which that state will be realized.2 In this
paper, we will be concerned with degenerating models only. While no single
strategy can be uninvadable in a degenerating model with no pure strategy
equilibria (Thomas 1984), in this paper we investigate the selective forces
which may generally favor mixed strategists over pure strategists, or vice
versa, in degenerating models.

One aim of this paper is to stress the importance of the distinctions between
these different realizations of biological complexity and variability. If the
game theoretic apparatus applied in degenerating models is not able to distin-
guish between complex populations of simple (pure strategist) individuals and
simple populations of complex (mixed strategist) individuals, what should we
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expect to find in nature? Under what conditions do these realizations of com-
plexity have different evolutionary roles? In particular, under what conditions
does natural selection discriminate between these alternatives?

In this paper we will discuss four different effects, arising in dynamic
models, which do discriminate between different realizations of variability.
Some of these factors have only local importance, while others are more gen-
eral in their application. All of these effects have been described individually
before, in some cases in detail and in other cases in a more cursory fashion.
However, they have not previously been integrated in a single picture.

We will discuss a series of models of increasing complexity. The most
complex case discussed will be a finite Hawk-Dove game, a two player contest
over a resource. We will focus on this case in particular because, despite the
simplicity of the game itself, when it is played in a finite population the
different effects interact in complicated ways. One methodological point to
which we wish to call attention is the superiority of dynamic methods over
static ESS methods for investigating many of these questions. Methods which
are designed to ask questions only about distributions of behaviors, and not
about how these distributions are realized, will in many cases obscure the
issues which are addressed in this paper. The dynamic methods, on the other
hand, naturally attend to the distinctions between different realizations of
variability.

As the paper is focused on differences between ways in which variability
can be realized, we need terminology to mark these distinctions. We will use
the term “mixed strategy” to refer only to mixtures which are realized in
individuals. A mixed strategist is an individual with the capacity to produce a
variety of behaviors. In the cases we examine here, mixed strategists produce
these behaviors randomly rather than by tracking the state of the world with
the aid of a cue.

Within the category of mixed strategists, we distinguish those cases in
which each individual does different things on different occasions, and those
cases in which an individual makes a single choice that determines all its
behaviors over its lifetime. In this latter case it is as if a genotype is playing
the mixed strategy; each individual of that genotype has the capacity for a
variety of behaviors but exhibits only one. If each individual chooses a single
behavior, this will be called developmental coin-flipping.3 If each individual
exhibits variety within its lifetime, this will be called individual behavior
mixing. In this paper we shall be less concerned with this distinction than
with that between mixed strategies and polymorphisms. However, one of the
effects that we will discuss does distinguish between these two individual-
level realizations of heterogeneity.
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The terms “population-level mixture” and “polymorphism” will be used to
denote the case where the population consists of individuals each of which can
produce one behavior only, but where different individuals produce different
behaviors. All the individuals of a given genotype exhibit the same fixed
behavior. An evolutionarily stable polymorphism, which cannot be invaded
by any single alternative strategy, is referred to as an evolutionarily stable
state. This is in contrast to an evolutionarily stable strategy (ESS), a single
(possibly mixed) strategy which cannot be invaded by any single (possibly
mixed) alternative.4 This not to say that an ESS cannot be invaded by some
combination of alternative strategies.

We must also attend to the distinction between behaviors (such as “hawk”)
and strategies (such as “always play hawk”). Additionally, notice that variety
in behavior can be expressed not only by monomorphic populations of mixed
strategists and polymorphic populations of pure strategists, but also by poly-
morphisms of mixed strategists. Models involving these populations, treated
by Schaffer (1988), will not be considered in this paper.

2. Replicator dynamics in a variable environment: the geometric mean
fitness effect

The first model we discuss does not use game-theoretic concepts at all. It is
intended as the simplest possible illustration of an effect which will play a role
in all the models we will discuss – the advantage that mixed strategies gain
from their reduced fluctuation in payoff across trials. The model is borrowed
from discussions in Seger and Brockmann (1987) and Cooper and Kaplan
(1982).

Consider an infinite population of asexual haploid organisms with non-
overlapping generations, subject to natural selection. Each organism con-
tributes progeny identical to itself to the next generation in proportion to its
fitness during its lifetime; this selective scheme, termed replicator dynamics,
functions as a basic model of evolution via natural selection. Mathematically,
replicator dynamics are expressed by the following equations:

pi(t+ 1) =
pi(t)wi

�w
; �w =

X
wipi (1)

The frequency of genotype i at time t + 1 is equal to the frequency of
genotype i at time t, times the ratio of the fitness of genotype i to the mean
fitness �w. These fitnesses wi may be constant, or may change from census
point to census point.

In the model presented in this section, the environment is variable over
time. Each individual lives for a season; there are wet seasons and dry sea-
sons which occur with equal probability and with no correlation over time.
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Table 1. Genotype fitnesses: wet-year fitness, dry-year
fitness, and geometric mean of wet and dry-year fitness.

A1 A2 A3

Wet Year 1 0.6 0.7
Dry Year 0.5 1 0.875

Geom. Mean .707 .775 .783

Suppose that there are three genotypes A1, A2, and A3. Of these, A1 is a
wet-year specialist and A2 is a dry-year specialist. These are genotypes for
pure strategies, producing the same individual phenotype in all cases. A3

is a developmental coin-flipping mixed strategist, producing the phenotype
associated with A1 with probability 0:25 and the phenotype associated with
A2 with probability 0:75. In any one year, some individuals of type A3 will
have the wet-year phenotype and some will have the dry-year phenotype.
Borrowing the parameter values of Seger and Brockmann (1987), the relevant
fitness properties of the three genotypes are given in Table 1.

Consider first the fitness relationships between A1 and A2. In each year
either the wet-year or the dry-year specialist is favored. The average rate of
increase of a genotype i across a series of years is measured by its geometric
mean fitness. If wet and dry years occur with equal frequency in a partic-
ular series, the average fitness �wi of genotype i is given by the following
expression.

�wi =
q
wiwet � widry (2)

In this case A2 has a higher geometric mean fitness than A1. However, A3

has a higher geometric mean fitness again.
The important role played by geometric mean fitness in circumstances

where there is variation in payoff over time was first recognized by Dempster
(1955) and Verner (1965). Geometric mean fitness is sensitive to fluctuation
across trials; it is reduced, in comparison to an arithmetic mean, by such
fluctuation. More detailed genetic models of this geometric mean fitness effect
were developed by Haldane and Jayakar (1963), Gillespie (1973), Hartl and
Cook (1973), Karlin and Lieberman (1974), and others.5 A mixed strategy
in circumstances of environmental fluctuation has a sort of “homeostatic”
property: by means of the production of variable phenotype or behavior within
a trial, fluctuation in fitness across trials is reduced, increasing geometric
mean fitness. In the case above, this makes the mixed strategy superior to
both specialists.6

Furthermore, in this model it is not possible for an equivalent result to be
achieved through a polymorphism of A1 and A2. Suppose the population is
in a polymorphic state with 25%A1 and 75%A2. This state mimics A3 at the
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population level, but such a polymorphism is not stable; A2 will be fixed at
the expense of A1. Moreover, A3 can invade any mixture of A1 and A2 and
go to fixation.

2.1 Developmental coin-flipping vs. individual behavior mixing

The models of Cooper and Kaplan (1982) and Seger and Brockmann (1987),
as well as the model above, consider the case of mixed strategy effected
by the mechanism of developmental coin-flipping. In the dynamical system
describing the change of genotype frequencies in the population, the fitness
of a developmental coin-flipping gene (relative to the fitness of population at
large) is the arithmetic mean of the fitnesses of the two behaviors which it
plays in different individuals.

Alternatively, a genotype can express a mixed strategy through individual
behavior mixing. Are the population-genetic dynamics of these methods of
expression of the mixed strategy equivalent? The answer depends on how
the fitness of an individual expressing both strategies is evaluated. If the fit-
ness of such an individual behavior mixer is simply the frequency-weighted
arithmetic mean of the fitnesses of the two pure strategies, the individual
behavior mixing case will be equivalent to the developmental coin-flipping
case in infinite population models. This is not always a fair assumption, how-
ever. If the mixed strategies are expressed sequentially within a generation,
and if fitnesses in each stage represent survival probabilities, the geometric
mean of the fitnesses of the two behaviors will be the appropriate metric of
lifetime individual fitness. In other cases, an arithmetic mean is entirely appro-
priate. For example, the fitnesses from each stage may correspond to total
acquired resources to be converted into offspring production, or the probabil-
ity of achieving a mating with a female in a given interaction. In other cases
still, the appropriate metric of lifetime fitness will be some more complex
function.

In the remainder of this paper, we will generally discuss mixed strategies in
the context of individual behavior mixing, making the assumption that arith-
metic mean fitness is indeed the appropriate metric of lifetime fitness. The
mathematical equations for the developmental coin-flipping case will be the
same as those for the individual behavior mixing case in infinite population
models. In finite population models, the developmental coin-flipping dynam-
ics run across an integer problem, in that not all fractional strategies can be
expressed in a population of a given size, and for this reason differ slightly
from the individual behavior mixing examples treated here. Moreover, there
is an additional difference, discussed in Section 4, between developmental
coin-flipping and individual behavior mixing in games where individuals
don’t “play against themselves.”
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3. The oak/maple game in a finite population

In the first model discussed, the fluctuations in payoff experienced by indi-
viduals were a consequence of variability in the physical environment. The
next case we will examine features frequency-dependent fitnesses; the pay-
offs associated with each behavior are dependent on the composition of the
population itself. Fluctuations in the “environment” encountered by individ-
ual agents, and hence fluctuations in fitness over time, are a consequence of
fluctuations in the composition of the population induced by the sampling
properties inherent in the reproductive process.

3.1 The model

Consider a population of asexual haploid organisms that have available to
them two alternative food sources, found in oak and maple trees respective-
ly. A single gene determines which food source will be chosen. Although
there are only two different food sources, there are three different genotypes
determining three different strategies for food gathering. The first of these is
to forage exclusively in oak trees (O), the second is to forage exclusively in
maple trees (M) and the third is the mixed strategy (I) of foraging in oak trees
half the time and maple trees half the time.7

The two foraging locations, oaks and maples, each have an equal share of
the total resource 4c, with 2c in oaks and 2c in maples. Individuals playing O
share equally among themselves from the 2c in oaks, and likewise individuals
playing M receive equal shares from the 2c in maples. Individuals playing
the mixed strategy I each forage in each place half of the time, and hence
receive a half-share from the oak allocation and a half-share from the maple
allocation.

Suppose that there are no sampling effects. It should be clear that the
payoffs associated with behaviors are equal when half of the foraging occurs
in oaks and half of the foraging occurs in maples. Foraging in oaks is beneficial
when more individuals are foraging in maples than in oaks, and vice versa.

At the level of strategies, there are various ways that a state with an
equal number of oak and maple foragers can be realized. There could be
a polymorphism of O and M, each at frequency of 0.5. Alternatively, the
population could be monomorphic for I. Thirdly, the population could contain
some portion of I and the remainder be equally divided between O and M.
When an infinite population is at any one of these states, it is said to be in
an evolutionarily stable state – with respect to behaviors – and all behaviors
have equal payoffs.
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3.2 Dynamic model of the oak/maple system: the basic mixed strategy
advantage

In this section we will use the oak/maple game in a finite population to outline
the second of the four effects discussed in this paper, the basic mixed strategy
advantage. In a given generation, let o denote the fraction playing oak and
m the fraction playing maple. Suppose that there are three haploid types,
pure O players with frequency in the population of x1, pure M players with
a frequency of x2, and mixed strategists I which mix the oak and maple
behaviors equally with a frequency in the population of y. Let �w be the mean
fitness in the population. After a single generation, the expected frequencies
of each haplotype are

�wx01 =
2x1c

o

�wx02 =
2x2c

m
(3)

�wy0 = yc

�
1
o
+

1
m

�

At this point, let x2�x1 = 2d, where 2d is the fraction of M players minus
the fraction of O players. Using the fact that x1 + x2 + y = 1, o = y=2+ x1,
m = y=2 + x2, and �w = 4c, the equations above become

x
0

1 =
(1� 2d� y)

2(1� 2d)

x
0

2 =
(1 + 2d� y)

2(1 + 2d)
(4)

y
0 =

y

(1� 4d2)

Now, let�t be the ratio of pure strategists to mixed strategists in generation
t, i.e., �t =

x1+x2
y

= 1�y
y

. Applying the above equations for x01; x
0

2, and y0,
algebra yields an equation for �t+1 in terms of �t:

�t+1 = (x01 + x
0

2)=y
0 = (1� y � 4d2)=y = �t � 4d2

=y (5)

Therefore, �t+1 � �t, for all x1, x2, and y, the number of pure strategists is
expected to be non-increasing. In a finite population, there will of course be
fluctuation in frequency associated with the sampling process of reproduc-
tion; here, we describe merely the direction of selection. Moreover the pure



213

strategists are replaced by the mixed strategists at a rate proportional to the
squared difference between the fractions of O and M players. At the very
best, the pure strategists are able to hold their own but make no gains against
the mixed strategists, when there are exactly as many pure O players as pure
M players.

In this system, there is an inevitable advantage to the mixed strategist.
Whenever the population is away from equilibrium with respect to behaviors,
the fitness of I is always higher than the average fitness in the population. Con-
sequently, the frequency of I is expected to increase whenever the population
is away from the equilibrium ratio of behaviors.

This effect is a consequence of the basic mathematical properties of nega-
tive frequency dependence in fitness. The rare behavior is always favored. As
a result, the more common pure strategist is always the less fit pure strategist.
The mixed strategist does not do as well as the rare pure strategist, whichever
one that is, but it is always doing better than the population average, when the
system is away from the equilibrium mixture of behaviors. This we call the
basic mixed strategist advantage. The first and most systematic discussions
of this effect of which we are aware are presented by Hines (1980, 1987).

This effect plays a role in all of the models to follow, for each of these
models will feature an advantage to rare behaviors. It does not play any role in
the stochastic replicator dynamics model of Section 2, because in that model
there is no advantage to rarity. The favored behavior in that model is the one
for which the environment happens to be suitable; this could be either the
common or the rare behavior.

It is important to recognize that this model shows the direction of selection,
considered deterministically. Therefore its result states that at almost any point
in the space of strategy frequencies, the direction of selection is such that
mixed strategists are favored to replace pure strategists. Random fluctuations
caused by the sampling inherent in the reproductive process may serve to
alter strategy frequencies independently of this direction of selection. Notice
that the model above does not explicitly treat this process of fluctuation – the
difference between the number of pure O and pure M players is treated as a
variable with unknown distribution over time. Instead, the model relies upon
the fact that in a finite population, sampling error is inevitable and therefore
d must sometimes be non-zero, in order to conclude that the mixed strategists
are selected to replace the pure strategists.

Furthermore, this model does not take into account the “geometric mean
fitness” effect discussed in Section 2. Since the present model examines
the fitnesses at one instant in time, fluctuation in fitness across generations
and consequently geometric mean fitnesses are beyond its scope. With the
geometric mean fitness effect playing no role in this particular formulation of
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Figure 1. De Finetti diagram for the oak/maple game, for a population of size n = 20.

the model, it is clear that the deterministic “basic mixed strategist advantage”
is a phenomenon distinct from the geometric mean fitness effect.

The results of this model can be seen in the diagram pictured in Figure
1. This diagram represents the direction of selection at each point on the
simplex,8 where each point represents a population composed of a different
fraction of pure O, pure M, and mixed strategist I players. At the equilibrium
ratio of Oak and Maple foragers, pure and mixed strategies are neutral toward
each other, as evidenced by the column of zero vectors down the middle of the
simplex. However, at all points away from the equilibrium ratio, the vectors
point not horizontally as would be expected if pure and mixed strategists
were neutral to one another, but diagonally upward, indicating that mixed
strategists are favored away from equilibrium.

3.3 The Geometric Mean Fitness Effect

Though not represented in the model of Section 3.2, the geometric mean
fitness effect will play a role in the oak/maple game as well. In the model of
Section 2, strategies experienced fluctuations in fitness, and a mixed strategy
was favored over pure strategies as a consequence of its reduced fluctuation
in payoff and consequent higher geometric mean fitness. In that model, the
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fluctuations in fitness were a consequence of variability in the physical envi-
ronment. In the oak/maple game played in a finite population, strategies again
experience fluctuations in fitness, in this case as a consequence of fluctuations
in the composition of the population itself. These fluctuations are due to the
sampling properties inherent in the reproductive process.

In the stochastic replicator dynamics case of Section 2, all three of the
strategies can have good years and bad years. The mixed strategist has less
successful good years, and less disastrous bad years, but it is possible for
the mixed strategist to have a fitness which is lower than the population
average in a particular year. This will happen when the favored pure strategist
has a high frequency. Though all the strategies can have good years and
bad years, in comparison to the rest of the population, the mixed strategist
is favored because of its low fluctuation in fitness and consequently, its
high geometric mean fitness. In the oak/maple game, on the other hand,
there is never a year in which the mixed strategy has a lower fitness than
the population mean. Its frequency is expected to increase whenever the
population is away from the equilibrium distribution of behaviors, whatever
the exact pattern of frequencies. However it is also the case that the mixed
strategist’s low fluctuation in fitness across years will give it some further
advantages. The relation between generations is multiplicative, as before, so
reduced fluctuation is advantageous.

Also, one should notice that there is a difference between the nature of
the two effects. The basic mixed strategy advantage is deterministic. The
argument asserts that a mixed strategy, at any point in frequency space, is
expected to increase in frequency. This is shown in Figure 1. The geometric
mean fitness argument, on the other hand, is stochastic. In an actual finite
population, evolving over time, these two effects will act simultaneously. The
mixed strategists will have higher fitness than the population average at any
point in time when the population is away from the equilibrium distribution
of behaviors, because of the basic mixed strategy advantage. Moreover, pure
strategists will tend to have greater fluctuation in fitness than will the mixed
strategists, resulting in a reduction of the pure strategists’ fitness over a series
of generations. In the next section, we consider one additional stochastic
effect aiding the mixed strategists.

3.4 The pure strategist co-dependence effect

The pure strategist co-dependence effect is another stochastic effect which
selects against pure strategists. The existence of this effect in a system of
this type was noted by Vickery (1988). We will discuss it in an informal way
here.
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For the pure strategists to have a reasonable chance of surviving for any
length of time in the population, both types of pure strategists, O and M,
must be present in the population. Otherwise the single remaining type of
pure strategist will always be foraging in the overused location and receiving
lower payoffs than the mixed strategists. If either type of pure strategist is
lost, the pure strategists as a class are very likely to be eliminated from the
population.

Consider a population consisting of half mixed strategists, half pure
strategists (one quarter O, one quarter M). It is much more likely that either
all O or all M pure strategists will be lost than that all the mixed strategists
will be lost, by simple sampling error of the reproductive process. Consider
a “neutral” model where the pure and mixed strategists receive precisely the
same payoffs, but loss of either pure type ensures fixation of the mixed strate-
gists. In a population starting with half pure strategists (again one quarter O,
one quarter M) and half mixed strategists, mixed strategists will eventually
be fixed with 5=6 probability.9

The oak/maple game is somewhat more complicated, in that a pure
strategy, when rare relative to the other pure strategy, experiences a strong
selective advantage and is likely to bounce back from near extinction, whereas
the mixed strategy enjoys no such buffer against extinction.10

4. The anti-coordination team game

In this section, we will look at another deterministic effect which distinguishes
between pure and mixed strategists. This effect, unlike the previous ones
discussed, favors pure strategists. The oak/maple game considered in the
previous section is an N -player game played by members of a population of
size N . The next case we shall consider is a game played as an encounter
between two players. We will assume (as is common in discussions of this
type) that each individual plays the game, without learning, against the other
members of the population with sufficient frequency that the payoff to an
individual is equal to the expectation of the payoff, given the population
composition in that generation (Maynard Smith, 1988).

In a game of this type, each player faces not the mean population strategy,
but the mean strategy of the other players in the population. In a finite popula-
tion with the behaviors expressed in the equilibrium ratio, each pure strategist
does not play against itself. Instead, it faces a subpopulation playing a strategy
equal to the mean population strategy with its pure strategy subtracted. This
subpopulation will naturally be impoverished with respect to that behavior,
when compared to the original population.
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This fact can, in certain circumstances, benefit the pure strategist over the
mixed strategist. First, the game must be one in which a behavior is favored
when the frequency of that behavior in the population is below equilibrium.
This condition holds for the games in Sections 3–5 of this paper. Second, for
the pure strategist to actually receive a higher payoff than the mixed strategist
mixing behaviors according to the evolutionarily stable state, the population
must express the equilibrium ratio of the two behaviors, or a ratio close
enough that the removal of a single pure strategist places that behavior in
the minority relative to equilibrium.11 Under these conditions, a pure strate-
gist will always be playing against a mixture of behaviors which is slightly
impoverished with respect to its own behavior, compared to equilibrium. As
it is encountering a mixture in which its own behavior is under-represented,
it receives a payoff which is better than the equilibrium payoff. The mixed
strategist playing the equilibrium mixture encounters the exact mixture of
behaviors that characterizes the population at equilibrium, and consequently
it receives the equilibrium payoff only.12 It is important to note that this
effect applies only to competition between pure strategists and individual
behavior mixers. A developmental coin-flipping mixed strategist, by virtue
of playing the same behavior for its entire life, also faces a population slight-
ly impoverished with respect to its own behavior and consequently receives
the same advantage enjoyed by a pure strategist. In the case of pure strate-
gists/developmental coin-flipper competition, the only deterministic effect
operating is the basic mixed strategy advantage.

We will call this the don’t play yourself effect (abbreviated DPY). Perhaps
the simplest model with illustrates this effect is a two-by-two game, the
“anti-coordination team game.”

4.1 The Model

Consider a population of asexual haploids playing the two-by-two game
specified in Table 2. This game is an anti-coordination game because it is in
the interest of both players not to coordinate (play the same strategy). We
call it a team game because player 1 always receives the same payoff as
player 2, regardless of the moves chosen by each, and thus the two players
are acting as a team, splitting the total payoff equally. In the payoff matrix
above, the lower case letters a and b represent particular behaviors. In a given
population, consider three strategies: A strategists exhibit only behavior a, B
strategists exhibit only behavior b, and mixed strategists I exhibit behavior a
with frequency 1/2 and behavior b with frequency 1/2. Suppose first that the
population is infinite so that there are no sampling effects. As in the oak/maple
game, at equilibrium, each behavior will be expressed with frequency 1/2 in
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Table 2. Payoff matrix for the team
anti-coordination game.

a b
a 0 1
b 1 0

the population and each behavior is advantageous when rare. Once again
there are various ways that this equilibrium can be reached at the level of
strategies. There could be a polymorphism of A and B, each at a frequency
of 0.5. Alternatively, the population could be monomorphic for I. Thirdly the
population could contain some proportion of I strategists and the remainder
be equally divided between A and B strategists. In an infinite population,
selection does not distinguish among these alternatives. This is not the case
in a finite population, however.

In order to examine the finite population case, we will write the dynamical
system as we did earlier for the oak/maple game. Define x1 as the fraction
of A players, x2 as the fraction of B players, and y as the fraction of I
players in the population. Bear in mind the fact that x1, x2, and y are not
continuous variables, because not all possible fractions can be expressed in a
population with a finite number of individuals. In a population of size n, the
non-normalized expected fitnesses of each type are given below.

wA = x2 +
y

2

wB = x1 +
y

2
(6)

wI =

�
1�

1
n

�
1
2

The dynamic equations for this system can be written as follows.

�wx01 =

�
x2 +

y

2

�
x1

�wx02 =

�
x1 +

y

2

�
x2 (7)

�wy0 =

�
1�

1
n

��
1
2

�
y

Here, x01, x02, and y0 are the frequencies of the A, B, and I strategists after
one generation, and �w is the mean population fitness, equal to the sum of the
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right hand sides of the above equations. Using the fact that x1 + x2 + y = 1
and defining d by 2d = x2 � x1, this system can be written as follows.

x
0

1 =
(1=2 + d)(1=2 � d� y=2)

1=2� y=2n� 2d2

x
0

2 =
(1=2� d)(1=2 + d� y=2)

1=2� y=2n� 2d2 (8)

y
0 =

(n� 1)y
n� 4nd2 � y

Now, let�t be the ratio of pure strategists to mixed strategists in generation
t, i.e., �t = (x1 + x2)=y = (1� y)=y. Applying the above equations for
x01; x

0

2, and y0, algebra yields an equation for �t+1 in terms of �t:

�t+1 =

�
n

n� 1

� 
�t �

4d2

y

!
(9)

Notice that this equation is the same as the equivalent expression for the
oak/maple game, except that in this case it is multiplied by n=(n� 1); this
extra coefficient represents the advantage had by pure strategists in not playing
themselves. As d, the distance from equilibrium with respect to behaviors,
approaches 0, �t+1 approaches n�t=(n � 1), i.e., pure strategists have an
advantage and their numbers increase. As jdj increases, the value of �t+1

will eventually fall below the value of �t, i.e., mixed strategists have the
advantage and their numbers increase. This is because of the basic mixed
strategy advantage.

This model, then, exhibits the interaction of two different deterministic
effects. Pure strategists have an advantage near the equilibrium with respect
to behaviors, because they do not play themselves, while mixed strategists
have an advantage away from equilibrium because of the basic mixed strategy
advantage.

The interaction of the two deterministic effects in this system is shown
in Figure 2. The vectors describing the direction of selection favor mixed
strategists away from the equilibrium, and favor pure strategists near the
equilibrium.

5. The hawk/dove game

At last, we are ready to consider the hawk/dove game, used by previous
authors as the primary vehicle for discussion of the issues considered in this
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Figure 2. De Finetti diagram for the anti-coordination team game, n = 20.

paper. Again, we will suppose that there is a finite population of haploid
individuals playing the game, in such a way that the payoff to an individual is
equal to the expected payoff associated with that strategy, given the population
composition in that generation. Like the anti-coordination team game, the
hawk/dove game is a two-player game. It is not a team game, but instead has
the following payoff matrix, where a < c < d < b:

Table 3. Payoff matrix for the hawk-dove game.

Hawk Dove
Hawk a b

Dove c d

In an infinite population, a lone hawk can always invade a population of
doves, and similarly a lone dove can always invade a population of hawks.
In fact, there is a single equilibrium ratio of behaviors, with the frequency of
hawk behaviors equal to the following.

p̂ =
(b� d)

(b� d+ c� a)
(10)
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Again, our discussion will compare two pure strategies with a single mixed
strategy. The pure strategies are “always play hawk” and “always play dove.”
The mixed strategist plays hawk with a probability that corresponds to the
equilibrium mixture of behaviors. The following system of equations specifies
the dynamic for the infinite population hawk/dove game, where x1 is the
frequency of pure doves,x2 is the frequency of pure hawks, y is the frequency
of mixed strategists (playing the infinite population equilibrium mixture of
behaviors), p̂ is the fraction of hawk behaviors by mixed strategists playing
the infinite population equilibrium, as given above, and the mean population
fitness �w is the sum of the right hand sides of the equations.

�wx01 = x1(dx1 + cx2 + (cp̂+ d(1 � p̂))y)

�wx02 = x2(bx1 + ax2 + (ap̂+ b(1 � p̂))y) (11)

�wy0 = y((bp̂+ d(1� p̂))x1 + (ap̂+ c(1 � p̂))x2

+(ap̂2 + (b+ c)p̂(1� p̂) + d(1 � p̂)2)y)

The dynamic equations for the finite hawk/dove game for a population of
size n, with mixed strategists playing the finite population equilibrium p̂f are
given below.

�wx01 = x1

�
d

�
x1 �

1
n

�
+ cx2 +

�
cp̂f + d(1 � p̂f )

�
y

�

�wx02 = x2

�
bx1 + a

�
x2 �

1
n

�
+
�
ap̂f + b(1 � p̂f )

�
y

�
(12)

�wy0 = y
�
(bp̂f + d(1 � p̂f )

�
x1 +

�
ap̂f + c(1 � p̂f )

�
x2

+
�
ap̂

2
f + (b+ c)p̂f (1� p̂f ) + d(1 � p̂f )

2
��

y �
1
n

�

Here the mixed strategists are playing the equilibrium mixture of behaviors
for a finite population – this is not the same as the familiar infinite population
equilibrium, as was pointed out by Schaffer (1988). In the finite case, the
equilibrium mixture of behaviors is a function of population size and is equal
to the following expression:

p̂f =
n�1
n�2b� d� 1

n�2c

b� d+ c� a
(13)

The dynamics of this system are quite interesting, despite the simplicity
of the game itself. All four of the effects discussed so far in this paper have
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an effect on the system, and their interaction is not straightforward. One
reason for this is that, unlike the behaviors oak and maple or a and b, the two
behaviors in the hawk/dove game, hawk and dove, are not symmetrical with
respect to each other.

Firstly, this is a system in which both of the deterministic effects outlined
earlier are found. When the population is some distance away from the equi-
librium mixture of behaviors, the basic mixed strategy advantage applies.13

Selection acts in favor of the mixed strategist. However, when the system is
near equilibrium with respect to behaviors, the “don’t play yourself” effect
acts against mixed strategists. In the anti-coordination game discussed in
Section 4, the DPY effect benefitted both pure strategies. In the hawk/dove
game, however, all strategies do best when facing doves. Pure hawks do not
have to play themselves, and instead face a population with more doves than
that faced by mixed strategists or doves. For this reason, pure hawks receive
a DPY advantage relative to mixed strategists and to doves. Mixed strategists
likewise play a population with more doves than do doves, and receive a sim-
ilar, though lesser, advantage relative to doves. Pure doves do not gain from
the fact that they play more hawks, but they do better than other strategies in
hawk-heavy populations.

The DPY effect not only aids hawks, but it also shifts the evolutionarily
stable ratio of hawk to dove behaviors, as population size changes. This is
why the finite population equilibrium behavior frequency is a function of
population size, as noted above (Schaffer 1988). In a team game, b = c and
therefore the finite and infinite population equilibria are the same. In a game
such as the hawk/dove game, a pure strategist playing the “selfish” strategy is
able to invade the infinite population equilibrium, because it does not have to
play itself. Though it does not increase its own payoff by playing the selfish
strategy instead of the mixed strategy, it nonetheless decreases the payoff to
the remaining individuals in the population by its choice of strategy, is more
successful than the population average, and therefore successfully invades
(Riley 1979).

The interaction of the two deterministic effects applicable to this system
is illustrated in Figure 3. Mixed strategists are favored away from the equi-
librium, while near equilibrium, the pure strategists are favored. This quali-
tative result holds regardless of whether the mixed strategists are playing the
finite population equilibrium strategy or the infinite population equilibrium
strategy.

In a finite population of this sort, the two stochastic effects we have
discussed will also operate. Firstly, there is a co-dependence relation between
the pure strategies. If either one of the pure strategies is lost, the other will
probably be lost soon after, as it is then strongly selected against. Thus, this
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Figure 3. De Finetti diagram for the hawk/dove game, mixed strategists playing finite popu-
lation equilibrium, n = 20, a = 0, b = 3, c = 1, d = 2.

effect favors the mixed strategists. Secondly, the geometric mean fitness effect
will play a role. In the games discussed earlier, the strategy with the lowest
fluctuations in fitness as frequencies change was the mixed strategy. In the
hawk/dove game, however, it is the pure dove strategy that has the lowest
level of fitness fluctuation and consequently receives the largest benefit from
the geometric mean fitness effect. A pure hawk has the highest fluctuation –
its payoff from an interaction is much more dependent on who it is paired
with than is the payoff to a dove. Mixed strategists are between hawks and
doves in this respect. The exact role of the two stochastic effects is difficult to
discern and more work needs to be done here. Hawks, for example, are more
severely affected when the population is unfavorable to them, but they will
also bounce back very rapidly from a situation of low frequency.

To investigate the relationship between the four effects which should
play a role in finite hawk/dove games, we made use of simulations. These
simulations were modeled on work done for similar purposes by Maynard
Smith (1988).

Maynard Smith’s simulation makes use of a population which starts at a
state in which there are 8 hawks, 7 doves, and 15 mixed strategists. The mixed
strategists play the infinite population ESS mixture. The result is that there
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Figure 4. Fraction of mixed strategist fixations in the hawk/dove game, mixed strategists
playing the finite population equilibrium, with 100,000 trials/point.

is a tendency for mixed strategists to win out over pure strategists. In 500
simulations, the pure strategists went extinct 380 times, or 76% of the time.
We should note here that the starting point chosen by Maynard Smith may
give an advantage to mixed strategists because of the codependence effect.14

We extended Maynard Smith’s simulations to populations of size 12
through 4000, starting with 1/4 hawks, 1/4 doves, 1/2 mixed strategists, and
conducting 100,000 trials for each population size. The fixation frequencies
of mixed strategists for each population size are seen in Figure 4. In this
figure, the mixed strategists are playing the finite population equilibrium for
the appropriate size of population.

We found the same basic result as that reported by Maynard Smith: the
mixed strategist is fixed more often. The results are qualitatively unaffected
when the mixed strategists play the infinite population equilibrium instead
of the appropriate finite population equilibrium. In both cases, the advantage
associated with the mixed strategy is also relatively constant, decreasing only
slightly as population size increases. It is interesting to notice that the fixation
frequencies of mixed strategists in the finite population model do not appear
to be converging to the fixation frequency in the infinite population model,
even as population size goes to infinity.

An overall picture of the hawk/dove game in finite populations is gained
by consideration of the two different methods we have used here. The deter-
ministic analysis represented in Figure 3 gives part of the picture: there is an
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interaction between the basic mixed strategy advantage and the DPY effect.
The first of these effects is a general one, applying in all games featuring
rare advantage. The second is more local in its application, applying to pure
strategists competing against individual behavior mixers in games which can
be modeled as a series of one-on-one interactions, but not necessarily in
games which are modeled as a series of simultaneous interactions with the
population at large, such as the oak/maple game in which one effectively
“plays oneself.” It is worth noticing that most “sex-ratio” games, in which an
individual attempts to produce offspring in a fitness-maximizing sex ratio, are
games in which one plays oneself and therefore such games will not feature
this DPY effect.

A different perspective is gained by means of the simulations, which
include stochastic factors as well as deterministic ones. As Vickery (1988)15

and Hines and Anfossi (1990) demonstrated and we discussed in more detail,
the purely deterministic dynamics, with no sampling-based fluctuations in
strategy frequencies, strongly favor the pure strategists. In the stochastic
simulations, however, we find that mixed strategists tend to have an overall
advantage, one which is largely independent of population size, and also
holds whether the finite population or the infinite population equilibrium
mixture of behaviors is played by the mixed strategist. This leads to an
important point: deterministic and stochastic methods can generate opposing
predictions. The natural process of reproduction being an inherently stochastic
process, this serves as a caution against over-generalizing from the results of
purely deterministic models.

6. Conclusions

This study had several distinct aims. On the more scientific side, we sought
a better understanding of the relationships between polymorphisms and
individual mixed strategies, asking which we expect to see in a popula-
tion, and why. On the more philosophical side, we sought to show that certain
widely-used methods, which analyze only the distributions of behaviors and
do not systematically treat the ways in which these distributions of behaviors
are realized, leave some important questions unaddressed, questions about
how properties like complexity and diversity are realized within and across
individuals. We will say more about each of these topics in turn.

Mathematically, we have described four distinct effects which discrimi-
nate between individual-level and population-level realizations of behavioral
heterogeneity; these effects are summarized in Table 4. Two of these effects
are deterministic and two are stochastic. By this we mean that two of them
concern simply the direction of selection, and two concern the consequences
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Table 4. Selective effects influencing pure/mixed strategist competition.

Selective Effect Type Favors First described by
Geometric mean fitness effect stochastic mixed/doves Dempster (1955)
Basic mixed strategist advg. deterministic mixed Hines (1980, 1987)

DPY effect deterministic pure/hawks Riley (1979), Schaffer (1988)
Pure strategist codependence stochastic mixed Vickery (1988)

of random fluctuation, as it interacts with selection. The deterministic effects
are the basic mixed strategy advantage which favors mixed strategies, and
the don’t play yourself (DPY) effect, which favors pure strategies, or, in the
case of the hawk/dove game, pure hawks. The anti-coordination team game
and the finite hawk/dove game feature both of these effects. The oak/maple
game features the basic mixed strategy advantage but not the DPY effect. The
stochastic replicator dynamics model of Section 2 does not have either effect.

The two other effects described are stochastic: the geometric mean fitness
effect and the co-dependence effect. Both of these effects favor the mixed
strategy over pure strategies in the oak/maple and anti-coordination game; in
the hawk/dove game, the geometric mean fitness effect favors pure doves. We
have not analyzed these effects in as much detail as the others. The geometric
mean fitness effect is easy to understand when it operates alone, as in the
stochastic replicator dynamics model of Section 2. No other effect applies
to that system. In the other games, however, it is more difficult to isolate
the consequences of this effect from the consequences of the other effects
discussed. This results from the fact that fitnesses are frequency dependent
in the other games, and thus any fluctuation which places the system at some
particular point in the space of frequencies will automatically have certain
effects on fitness. Though we have not treated this effect in detail in the later
models, we claim that it should play a role in all models discussed, as a
consequence of the multiplicative nature of the relations between fitnesses
which vary over time.

We also have not discussed the co-dependence effect in detail. This effect
operates in all the models discussed except for the initial model, because in
each of these models, a lone pure strategy is likely to be lost in the absence
of its counterpart. One problem which must be addressed in a more detailed
analysis of this effect is the fact that the pure strategists have an advantage
when rare, so that they will “bounce back” from a low frequency. In contrast,
the mixed strategist does not have any advantage from rarity per se; it only has
an advantage if one or the other of the pure strategists is rare. Consequently,
it does not bounce back with the same strength from a state of low frequency.

The four effects we have examined have all been discussed previously in
some form. The geometric mean fitness effect dates from Dempster (1955)
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and Verner (1965), the basic mixed strategy advantage has been discussed by
Hines (1980), the DPY effect has been discussed by Riley (1979), Schaffer
(1988), and Hines and Anfossi (1990), and the co-dependence effect was noted
by Vickery (1988). Our aim here has been to explore a range of situations in
which various combinations of these effects apply, to provide an explanation
of why each occurs, and to put these diverse effects together, viewing them
as components of a larger picture. An additional step, not yet taken, would
be a detailed examination of the relative magnitudes of each selective effect;
such an investigation would further aid in providing an explanation of the
simulation results presented in Figure 4.

More philosophically, we have tried to press a certain set of questions into
the foreground. These questions have the following form: granted that some
particular model predicts variation or heterogeneity in behavior, how is this
heterogeneity likely to be realized in the biological world? At what level – the
individual, or the population – will the heterogeneity reside? These questions
are neglected by some popular methods of analysis, including standard static
ESS analysis. In a system as simple as the oak/maple game, for example, the
machinery of standard ESS analysis is able to answer the question of what
distribution of oak-behaviors and maple-behaviors is expected, but it is not
able to tell us if there is any reason to expect a polymorphism of specialist
behaviors or a monomorphic population of mixed strategists. A dynamic
analysis is able to answer this question.

There is an important sense in which “evolutionarily stable strategy
theory” is often a misnomer. In games of the type considered here, this
theory describes evolutionarily stable distributions of behaviors, and does not
address the realization of these distributions of behaviors. This class of games
(called “degenerating” by Thomas (1984)) includes such paradigmatic cases
as the ordinary hawk/dove game.

The DPY effect can be used to make this point vivid. In both the anti-
coordination game and the hawk/dove game, in a finite population, the system
can be at or very close to equilibrium with respect to the distribution of
behaviors and yet still be undergoing evolutionary change. While the system
sits at equilibrium with respect to behaviors, the mixed strategist is steadily
being selected against (see Figure 2). The mixed strategist can be lost – a
particular realization of biological complexity can be eliminated from the
population – while the population remains “at or near equilibrium” with
respect to the distribution of behaviors.

This is not an inconsistency in the basic ESS theory; the framework selects
one type of question, and makes strong idealizations in addressing it. Further,
the DPY effect, which we use to make this point, only applies in a finite pop-
ulation, while ESS theory is usually intended to describe infinite populations.
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As this case shows, however, the predicted evolutionary outcome in a large
finite population can differ in biologically important ways from the predicted
outcome in an infinite population.

When particular methods become popular, some questions are pushed into
positions of prominence and others are relegated to minor roles. ESS methods
study the distributions of behaviors, and push the issue of the realization of
these distributions back into the wings. Our aim has been to bring the issue
of realization into center stage.
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Notes

1 The consequences of this feature of Levins’ model are discussed in Seger and Brockmann
(1987) and Godfrey-Smith (1996).
2 Non-degenerating models may predict variety which cannot be realized by population level
expression of the mixed strategy, i.e., by a polymorphism of pure strategists. For example,
a mixed strategy may be maintained by the trade-off between individual benefits and group
costs of a particular action. In local resource competition models (Clark 1978), producing the
non-dispersive sex provides an individual benefit, for this is the rarer sex, and a group cost, in
that all individuals in the group must later compete with this individual (Orzack 1993, personal
communication). Similarly, begging nestlings may experience an individual benefit in terms
of an increased probability of being fed, and a group cost in terms of increased predation risk
for the nest (Godfray and Parker 1992). Under these circumstances, individuals playing the
pure strategy with no individual benefit and no group cost will be out-competed by individuals
playing the pure strategy with individual benefit and group cost. Thus the mixed equilibrium
is unstable when it occurs at the population level; instead we expect to find each individual
expressing the equilibrium mixed strategy.
3 Here, we modify the terminology of Cooper and Kaplan (1982), who termed this adaptive
coin flipping.
4 For a discussion of the formal definition of evolutionarily stable strategies, see Hines (1987).
5 Gillespie (1991) summarizes and extends the previous work on this problem.
6 For any actual sequence of years, the relative rate of increase of a genotype in a haploid
model is given by its geometric mean fitness where the weighting is done by the frequencies
of the different types of years in the sequence. It is also possible to construct a model in
which the underlying probabilities of different types of years are used, rather than their actual
frequencies. In that case it is necessary to take into account all of the possible sequences of
years when computing expected fitness. In this section, however, we will restrict our discussion
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to the simpler type of model, using the actual frequencies of different events in a sequence of
years or trials. This simpler type of model is sufficient to illustrate the key phenomenon.
7 It is important to distinguish the mixed strategists in this model, which always forage from
each source half the time, from generalists which can choose to forage in the less depleted
area. Wilson and Yoshimura (1994) present a model of the latter type.
8 When the population under consideration is finite, not all points on the simplex are actually
attainable. This is not a problem, in that the diagram describes the direction of selection at all
points, a subset of which are the ones possible in a finite population of a given size.
9 To see this, start with a population with three neutral types: O, M, and I, in fractions 1/4, 1/4,
and 1/2 respectively. Break the I players into two groups, I1 and I2. If either the O group or
the M group goes extinct before both I groups are lost, the pure strategists are doomed. Since
the types are neutral with respect to one another when all are present, the probability of losing
O or M first is 1/2; conditional that this has not occurred, the probability of losing O or M
second is 2/3. Therefore, the probability of losing neither O nor M first or second is 5/6; this
is the probability of the pure strategists outlasting the mixed strategists composing the two I
groups. Computer simulations of the neutral case, for finite population sizes with O, M, and I
populations chosen from a trinomial distribution, confirm this result.
10 This effect complicates the process of defining exactly when mixed strategists are “out-
performing” pure strategists. Often, “outperforming” is based on fixation probabilities for
non-frequency dependent selection; type A outperforms the other types when, starting with
frequency x in the population, it is fixed with probability y > x. While this definition can
be applied to pure/mixed competition, it does not seem entirely adequate, because of the pure
strategist codependence effect. By this definition, in a model which is selectively neutral when
all types are present, mixed strategists still drastically “outperform” pure strategists. One way
around this problem is to consider populations which feature mutation. In a neutral model with
mutation, the expected proportion of a given strategy is equal to the proportion of mutations
to that strategy. A strategy could be said to outperform the other strategies whenever the mean
frequency of that strategy exceeds the proportion of mutations to the strategy. This approach
has not yet been used in treating pure/mixed strategist competition.
11 Even when this second condition does not hold, the pure strategists are aided by this effect.
However, if this second condition is not met, this advantage is not great enough to give both
pure strategist types a higher payoff than that of the mixed strategist.
12 Schaffer (1988) describes a consequence of this effect for the hawk/dove game (to be
discussed in the next section). He notes that in a finite population of individuals playing the
repeated hawk/dove game, any mixed strategy equilibrium can be invaded by a pair of other
strategies that “frame” the equilibrium, one playing hawk more frequently and the other playing
hawk less frequently.
13 Hines (1987, 1980) notes the application of the basic mixed strategy advantage to hawk/dove
games. His discussion shows that the effect always applies when the system is away from
equilibrium, if the population is infinite. Sober (1993) and Orzack and Sober (1994) appear
to apply this result, or one like it, to finite populations. In a finite population, however, this
effect can be outweighed by the DPY effect discussed in this paper. This can be seen by
counter-example. Consider a population playing the hawk/dove game with payoff parameters
a = 0, b = 3, c = 1, and d = 2. The evolutionary stable strategy (in an infinite population) for
this population is one half hawk, one half dove. Consider a population with three hawks, two
doves, and one mixed strategist playing (1/2, 1/2). The average population fitness exceeds the
fitness of the mixed strategist playing the ESS. Even when the mixed strategist is playing the
finite-population ESS, 3/4 hawk in this case, it has a lower fitness than the population average.
14 Maynard Smith also offers a heuristic argument for the success of the mixed strategists,
based on a measure of geometric mean fitness which, in our view, is not correct. He compares
a polymorphism to a mixed strategy in the following way: the geometric mean fitness of the
hawk and dove strategies, within a year, is compared to the geometric mean fitness of the
mixed strategy within a year. However, the appropriate way to make use of geometric mean
fitnesses in this situation is to compare the geometric mean fitnesses of each of the various
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strategies across years, as we did in Section 2. This is the style of analysis used in the models
of Dempster (1955), Haldane and Jayakar (1963), Gillespie (1973), and the other authors
mentioned earlier. Our criticism of Maynard Smith on this point is necessarily qualified by the
fact that he introduces his geometric mean argument very tentatively.
15 Vickery (1988) reports the results of simulations which resemble those of Maynard Smith
(1988), but which remove the stochastic factors associated with reproduction. The represen-
tation of a strategy in the next generation is exactly proportional to its fitness in the present
generation. Under these conditions, mixed strategists always went to extinction. This is pre-
dicted by our analysis; if there are no stochastic fluctuations associated with reproduction, then
the system will move to the equilibrium ratio of behaviors and stay there, and as it does so the
DPY effect will lead to the extinction of the mixed strategists.
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