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Abstract

We present a dynamic model of the evolution of communication
in a Lewis signaling game while systematically varying the degree of
common interest between sender and receiver. We show that the level
of common interest between sender and receiver is strongly predictive of
the amount of information transferred between them. We also discuss
a set of rare but interesting cases in which common interest is almost
entirely absent, yet substantial information transfer persists in a cheap
talk regime, and offer a diagnosis of how this may arise.
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1 Introduction

An important recent development in the naturalistic study of communication
is the systematic investigation of simple, computationally tractable models.
Such models are severely idealized in many respects, but there are invalu-
able gains in the explicitness and rigor of the results obtained by working on
them, alongside the familiar approach of engaging in informal discussion of
more realistic examples. Some areas of concern to philosophers that this re-
search program has already shed light on are the difference between assertions
(indicatives) and directives (imperatives) (Huttegger 2007; Zollman 2011); sig-
naling in social dilemmas (Wagner 2014); deception (Zollman, Bergstrom and
Huttegger 2013; Mart́ınez 2015), and vagueness (O’Connor 2014).

Formulating the problem of communication in a way that makes it ammenable
to a rigorous treatment of this kind is in itself a major philosophical contribu-
tion. Most of the work cited above is based on Lewis’s (1969/2002) model
of signaling. In this model a sender (or, for Lewis, ‘communicator’) sends
messages to a receiver, (or, for Lewis, an ‘audience’) and both parties receive
a payoff that depends on the state the world is in when the message is sent
and the act performed by the receiver in response. (In this paper we focus on
so-called cheap talk games, in which payoffs do not depend on the type of mes-
sage sent.) The message sent by the sender on a given occasion is decided by
a sender’s strategy: a function that takes states (that is, members of a set S
of mutually exclusive and jointly exhaustive ways the world can be) to a prob-
ability distribution over the set M of possible messages. The act performed
by the receiver is decided by a receiver’s strategy: a function that takes each
member of M to a probability distribution over the set A of possible acts. A
signaling game is individuated by two payoff matrices that give the payoffs
for sender and receiver for each combination of state and act, together with
a distribution that gives the unconditional probabilities of states. A sender-
receiver configuration is individuated by a signaling game, a sender’s strategy
and a receiver’s strategy.

So, for example, a certain signaling game, SG, is univocally described by giv-
ing, first, the payoff matrices in Table 1 and, second, the distribution for S
( 1

3 ,
1
3 ,

1
3 ) – that is, by stating that the three states the world can be in are

equiprobable. And, for example, a sender-receiver configuration is individu-
ated by SG together with the sender’s and receiver’s strategies in Table 2.

That is, the sender will always send M1 in S1, and M2 in S2, and will throw a
biased coin in S3, so as to send M1 with a probability of two thirds, M3 with
a probability of one third. The receiver’s strategy can be read analogously.

In Lewis’s original discussion, sender and receiver are rational agents with
complex intentional profiles, and emphasis is put on sender-receiver configu-
rations that achieve various kinds of equilibrium states. In Skyrms’s (1996,
2010) groundbreaking reinterpretation of the Lewisian framework, in contrast,
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S1 S2 S3
A1 5,0 2,4 0,5
A2 6,5 0,0 1,6
A3 0,6 6,6 5,3

Table 1: Two payoff matrices. The pair of numbers in each cell represent,
respectively, the sender’s and the receiver’s payoffs for a given action (A)
performed by the receiver in a given state of the world (S). The payoff matrix
for the sender cam be reconstructed by taking the first member of the pair of
numbers in each cell; that for the receiver, by taking the second member.

S1 S2 S3
M1 1 0 2

3
M2 0 1 0
M3 0 0 1

3

M1 M2 M3
A1 1 1

2 0
A2 0 1

2 0
A3 0 0 1

Table 2: A sender’s and a receiver’s strategies

what counts is not the players’s rational appreciation of the payoff situation,
but the way in which various selection processes (evolution, reinforcement
learning, and imitation) can shape the strategy of agents, who may be indi-
vidually very unintelligent, as a result of those strategies being more or less
successful in securing payoffs.

In the present paper, we apply these methods to some long-standing questions
about the relationship between communication and common interest. Many
theorists, both in philosophy and other fields, have seen communication as a
fundamentally cooperative affair, an interaction between agents whose inter-
ests are at least fairly well aligned. This has been a common theme across a
range of literatures, including speech act theory (Grice 1957), Ruth Millikan’s
naturalistic theory of intentionality (1984), and a range of recent work on the
evolution of human behavior (Tomasello 2008; Sterelny 2012). Lewis himself
assumed that common interest “predominates” in his original model (Lewis
1969/2002, 10). In the context of the Lewis model, there is common interest if
sender and receiver tend to want the same acts performed in a given state of
the world. Interests are divergent when the two agents want different pairings
of actions and states. An intuition that many have shared is that if the inter-
ests of sender and receiver are too divergent, then a receiver will be unwise
to trust anything a sender says. If receivers stop listening, there is no point
in talking. So divergence of interests should eventually make communication
collapse. This intuition is fundamentally a dynamic one; it predicts that when
sender and receiver diverge enough in interests, a particular outcome should
occur. How, then, do these ideas fare when cast in a formal model of behav-
ioral change, using a dynamic version of the Lewis model? What role does
common interest have in producing and maintaining communicative interac-
tions? Those are the themes of this paper.
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Earlier work has already shed some light on this question. Skyrms (2010)
considered a few cases of imperfect alignment of interests in a Lewis signal-
ing model, and showed that communication could be an equilibrium state in
these cases. Skyrms discussed just a handful of cases, though. A classic model
from economics, Crawford and Sobel (1982), gives a more general and rigorous
treatment of the consequences of divergent interests for a static model that
has both similarities and differences from the Lewis set-up. They imagined
a situation in which a sender wants to exaggerate their quality (or another
relevantly similar state of the world), to some degree, and the receiver wants
not to be taken in by the exaggeration. Crawford and Sobel found that as
interests diverge more and more, fewer distinct signals can be used at equilib-
rium, until signaling collapses into a “pooling” outcome in which the sender
makes no distinction between different states of the world. This result is in
accordance with the intuition, outlined above, that when interests diverge too
far, senders will say nothing worth listening to.

In both economics and biology, a rich set of models has been developed that
explore the consequences of differential signal cost in enforcing honesty when
interests diverge. When signaling itself is a costly action, there are situations
in which it is plausible that only honest senders can afford to send a signal of
a given kind. The first model to explore this idea was offered in economics by
Spence (1973), and applied to the case of job markets. Zahavi, independently,
soon after applied the same principle to biology (1975), where the choice of
mates by females replaced the choice of employees (see also Grafen 1990a, b;
Maynard-Smith and Harper 2003; and Zollman, Bergstrom and Huttegger
2013). Since then, a wide range of models of this kind have been developed.
In some models, the costs need only be operative when the population is not
at equilibrium (Lachmann, Szamado and Bergstrom 2001).

The detailed development of costly signaling models may have fostered the im-
pression that communication is very difficult to maintain in situations where
signal costs are entirely absent and interests do not align. Some well-known
games do give this impression. However, this impression is somewhat mis-
leading. In earlier work of our own, (Godfrey-Smith and Mart́ınez 2013), we
used computerized search methods to assess the value of some exact mea-
sures of common interest as predictors of the viability of communication in a
cheap-talk Lewis model. By looking far outside the set of familiar games, we
found that communication could persist in some situations characterized by
extremely low levels of common interest. We also found a general predictive
relationship between our measures of common interest and the viability of
communication. This earlier work, however, focused entirely on the existence
of Nash equilibria1 and contained no dynamical models. It did not investi-

1In this context, a Nash equilibrium is a sender-receiver configuration
in which neither sender nor receiver can increase their expected payoff by
unilaterally changing their strategy.
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gate how accessible to evolution equilibria were.2 The present paper considers
the relationship between communication and common interest using dynamic
methods. We ask how different degrees of common interest affect the evo-
lutionary trajectories of populations of senders and receivers interacting in
accordance with a Lewis model.

Section 2 describes the model used: a family of Lewis sender-receiver games,
embedded in an evolutionary model on which quantitative measures of com-
munication and common interest are defined. Section 3 discusses the main
results regarding the relation between the degree of common interest present
in a game and the maintenance of communication, while Section 4 takes a
closer look at the case of very low common interest. Section 5 assesses the
significance of our results, and offers conclusions.

2 The Model

Our model uses a Lewis sender-receiver game of the kind characterized in the
introduction, and then embeds this game in an evolutionary model in which
change is described with the replicator dynamics (Hofbauer and Sigmund
1998, chap. 7; Sandholm 2010, 126). Specifically, consider a signaling game, a
set of possible sender’s pure strategies S = {σ1, . . . , σq}, and a set of possible
receiver’s pure strategies R = {%1, . . . , %r}. Instead of a single sender and
a single receiver, we have a population of senders, and another of receivers.
The sender population can be characterized in terms of q behavioral types,
each one of them implementing a different strategy in S, and their associated
frequencies. The receiver population is, similarly, characterized by r types
and their associated frequencies. The frequencies of the different sender and
receiver types are X = {x1, . . . , xq} and Y = {y1, . . . , yr}.

Members of the sender population are assumed to interact with members of
the receiver population. The average payoff for the sender type that follows
strategy σi when dealing with a receiver following strategy %j is πσij . The
receiver in that encounter gains π%ji. These payoffs are easily calculated from
the payoff matrices, the players’ strategies, and the unconditional probabilities
of states.

The average payoff for a sender type is the weighted average of the payoffs
this type gets with each type present in the receiver population: πσi =

∑
j

πσij · yj .

Mutatis mutandis for the receiver: π%i =
∑
j

π%ij · xj .

2Wagner (2012), discussed below, and Wagner (2014) also use dynamic
methods to study the emergence of communication in situations of significant
conflict of interest.
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Finally, the average payoff for the entire sender population is the weighted
average of the averages per type: πσ =

∑
i

xiπ
σ
i . Mutatis mutandis for the

receiver: π% =
∑
i

yiπ
%
i .

If sender and receiver populations follow the two-population replicator dynam-
ics, the rate of change over time of the frequency of each type is given by the
following differential equations:

ẋi = xi · (πσi − πσ) (1)
ẏi = yi · (π%i − π

%) (2)

We have now embedded a Lewis model within an evolutionary framework.
Our next topic is the characterization of common interest between sender and
receiver.

As in Godfrey-Smith and Mart́ınez (2013), we use C as a measure of common
interest between sender and receiver. C formalizes the following idea: sender
and receiver see perfectly eye to eye insofar as the outcome they most prefer
coincides in every state, their second preference coincides too, and so on down
to the least preferred outcome. Their interests diverge gradually as these
preference rankings diverge.

C is calculated as follows. For each state (i.e., each column in the sender and
receiver payoff matrices), we calculate the Kendall tau distance (the number
of pairwise disagreements in the ranking of acts) between sender and receiver
payoffs. For example, in the payoff matrix in Table 1, the Kendall tau dis-
tance for state S1, τS1 , is 2: sender and receiver disagree about which member
is preferable in the pairs of acts (A1, A3) and (A2, A3), but agree that A2 is
preferable to A1. τS2 is 0: they agree completely on the preference ranking for
acts in that state. τS3 is also 2. An average distance is then calculated, using
the unconditional probabilities of states as weights:

τ =
∑
i

Pr(Si) · τSi

Finally, τ is rescaled so as to have 0 as no common interest, and 1 as perfect
common interest. For n states this yields

C = 1− 2
n(n− 1) · τ

C is a very coarse-grained measure of common interest.3 In games with 3
equiprobable states and 3 acts, there are only 10 possible values of C. How-

3For example, it does not give any special role or weighting to actions
that yield the best payoff for sender and receiver. There is some reason to

6



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

ever, as we will see, it is strongly predictive of the possibility of communica-
tion.

Next we consider how to describe communication itself in such a set-up. We
say that a sender-receiver configuration contains informative signaling when
the signals sent carry some information about the state of the world, and the
acts performed carry information about the signal sent. These relationships
are measured as mutual information. This is a widely-used concept, originally
due to Shannon (see Shannon and Weaver 1949), that measures the amount
of association between two variables, the extent to which the value of one pre-
dicts the value of the other. Mutual information is symmetrical and its value
ranges between a minimum of 0 (no association) and a maximum dependent
on the amount of entropy (uncertainty) in the two variables. It is calculated
as follows:

The (unconditional) entropy of states is given by

H(S) = −
∑
i

Pr(Si) log2(Pr(Si))

And the entropy of states conditional on acts is given by

H(S|A) = −
∑
i

Pr(Ai)H(S|A = Ai)

where Pr(Si) is the unconditional probability of state Si. Finally, the mutual
information between states and acts is given by

I(S;A) = H(S)−H(S|A)

In games with 3 states, 3 messages, and 3 acts, if I(S;A) = log2 3, the sender’s
strategy is a bijection between S and M, and the receiver’s strategy a bijec-
tion between M and A. We will refer to configurations in which both sender’s
and receiver’s strategies have this property as signaling systems – we take this
notion from Lewis (1969/2002), but our use differs from his in that we are
placing no constraints on the payoffs received by sender and receiver, while
for Lewis players engaging in a signaling system always obtain maximum pay-
offs. If I(S;A) = 0 nothing whatsoever can be said about the state of the
world from the act the receiver performs – this corresponds to the absence of
communication.
think that a match in these actions, for a given state, should be particularly
important in maintaining communication. However, when we experimented
with a weighting of this kind, the result was a less predictively useful measure
than C.
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Next we describe the relationships between the states of populations of senders
and receivers, on one hand, and the measure of communication outlined above.
As we have set up our model, at any given time a range of different types
may exist in each of the two populations – the sender population and receiver
population. Thus, a great range of different communicative interactions are
assumed to be taking place – there is not a single sender-receiver configu-
ration present, in the sense we introduced earlier. However, we aim to give
a general characterization of the sender-receiver relationships that exist at
each time. We do this in a way that has become common in models of this
kind; we “translate” the pair of population structures that are present at a
time into a single sender-receiver configuration by averaging over the different
individual-to-individual interactions that are possible given the state of the
two populations.4 For each state of the world, there is a probability distribu-
tion over messages that is determined by the state of the sender population.
Thus there is a population-wide “sender’s strategy” instantiated for that state.
Similarly, for each available message, there is a probability distribution over
acts that is determined by the state of the receiver population, and hence a
population-wide “receiver’s strategy” instantiated for that message. The com-
bination of these population-wide strategies plus the unconditional probability
of states determine the mutual information between states and acts.

3 Results

Our main research question was how the presence of communication relates
to common interest. We look into this question by generating a large num-
ber of random signaling games at each level of common interest, and then
recording how likely it is in these games that random starting points evolve
to a situation in which communication happens, depending on the level of
common interest. Specifically, we focus on cheap talk signaling games with
3 equiprobable states, 3 messages and 3 acts. There are 10 possible values of
C, our measure of common interest, for games of this sort. These games are
individuated by 18 numbers: the 18 values in a payoff matrix of the form seen
in Table 1.

For each value of C, we generated 1500 collections of 18 random integers
between 0 and 99. Each one of these collections individuates a signalling
game. A population of senders (the same applies to receivers) is character-
ized in terms of the frequencies of the 27 types of pure strategists who may
be present. These pure strategies can be represented as follows, using the
convention introduced in Table 2 in the introduction:

4cf. Zollman, Bergstrom and Huttegger (2013, 7). This can be done
straightforwardly if, as in Table 2 above, strategies are rendered as matrices.

8



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

1 1 1
0 0 0
0 0 0

 ,

1 1 0
0 0 1
0 0 0

 , . . . ,

0 0 0
0 0 0
1 1 1


For each of the 1500 random games per value of C, we ran simulations start-
ing from 1000 different randomly-chosen states of the two populations (the
sender and receiver populations). This is equivalent to choosing 1000 random
ordered pairs of points in the 26-dimensional simplex. At t = 1000, the pair of
resulting population states was “translated” into a sender-receiver configura-
tion, in the way described above, and the mutual information between states
and acts was recorded. When the sender-receiver configuration at t = 1000
showed nonzero mutual information between states and acts, we scored that
simulation as one in which communication evolves. In total, then, 10 (val-
ues of C ) times 1500 (random games) times 1000 (pairs of random starting
frequencies) simulations were run (1.5 · 107 simulations).

We next note some implementation details. First, no effort was made to check
whether by t = 1000 populations had settled into any specific kind of equilib-
rium or cyclic behavior, although casual inspection shows this to be often the
case. Similarly, we have not checked for the stability, in any formal sense, of
t = 1000 states; we have not assessed the consequences of small hypothetical
deviations from these states.

Finally, to prevent rounding errors from impacting the results, we only count
as nonzero amounts of information above 10−3 bits. It is possible, if unlikely,
that rounding errors still play a role in the final results: calculations are car-
ried out using 64-bit floating-point numbers. In the computer we have used,
this means that the minimum frequency for a population is around 2 · 10−308,
types that go below this frequency simply becoming extinct. In the replicator
dynamics it is impossible for a frequency to decline to exactly zero, so it is in
principle possible that this computational limitation introduces a distortion:
that is, it is in principle possible that types below the 2 · 10−308 mark would
have bounced back to nonnegligible frequencies. On the other hand, this num-
ber is so low that the empirical relevance of results that depended on types
bouncing back from such a frequency would be doubtful.

A coarse-grained summary of the results of these simulations is given in figure
1. This figure shows, for each value of C, the overall proportion of simulations
in which communication evolved. So we here group together, within each
value of C, all the games with that value of C and all the initial states for
each game. We then find, as shown in figure 1, that C is very predictive of
this proportion: there are very few cases of the evolution of communication
when C = 0 (although there are some; see Section 4 for discussion), while this
is by far the most likely outcome when C = 1.5 The dependence of communi-

5In our sample, there are 165 C = 1 games in which simulations never
evolve to communication. These are all of the games in the sample (and the

9



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

cation evolution on C is monotonic and appears to be smooth across the chart
(although bear in mind that there are only ten values of C, and curve fitting is
therefore not entirely meaningful).

Figure 1: Proportion of simulations in which communication evolves, ex-
pressed as a function of common interest

only ones) in which one and the same act is the most preferred in every state.
That is, in these games, if, e.g., act 3 is the most preferred for sender (and re-
ceiver: these are C = 1 games, so their preferences always coincide) in state 1,
then it is also the preferred act in states 2 and 3. This makes communication
useless: the receiver can ignore the sender’s signals and simply do the best act
no matter what. Godfrey-Smith and Mart́ınez (2013) shows that the depen-
dence of communication on this kind of contingency of payoff is as systematic
as its dependence on the degree of common interest. However, Godfrey-Smith
and Mart́ınez (2013) errs in giving too strong a specification of the cases in
which C = 1 games fail to accommodate communication; any C = 1 game in
which the same act is best for every state will prevent communication, even if
the value of other acts varies across states.

Apart from these systematic failures of communication, there are many
C = 1 games in which a minority of simulations do not reach communication,
but most other simulations for these games do.
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In previous work, as noted in the introduction, we carried out an analysis of
the prevalence of communicative Nash equilibria in samples of games with
different values of C. This work used the same criterion for an “information-
using” outcome that we employ here, though in the earlier paper this cri-
terion only characterized equilibrium states. Our dynamic analysis in this
paper confirms the conclusions drawn about the predictive value of C in the
earlier work. In particular, the proportion of outcomes in which communi-
cation evolves, for each value of C, in the dynamic analysis is strongly cor-
related with the proportion of games, for each value of C, that contain an
information-using Nash equilibrium as found in the earlier study. The Pear-
son correlation coefficient between the two series of values is 0.9990 (with
p < 0.001).

Thus, the results of the dynamic model of this paper do appear to validate the
findings of the earlier static analysis of the role of C in maintaining communi-
cation.

4 Communication at Very Low Values of C

As figure 1 shows, in some games with C = 0 we find a few starting points
that evolve to situations in which communication is sustained by t = 1000.
A value of C = 0 only obtains when the preferences of sender and receiver
are reversed everywhere. That is, the most preferred act for the sender is the
act least preferred by the receiver, and conversely, in every state. Remarkably,
even in such a situation some simulations (ten thousand out of half a million
runs, in our sample) can accommodate communication. On the other hand,
this feature of our results does show some sensitivity to the dynamics chosen:
when we ran the same simulations using the replicator-mutator dynamics,
there were no runs in which a C = 0 game evolved to maintain communica-
tion at t = 1000. (Details of this analysis are given in Appendix A.)

A further notable feature of the dynamic results is that no simulation in our
C = 0 sample evolved towards a Nash equilibrium in which information was
being exchanged (although in some C = 0 games an information-using Nash
equilibrium does exist.) This is evident from the fact that no such simulation
was approaching an information-exchanging state (Nash or not) in which
frequencies of behaviors had ceased to change by t = 1000. Instead, most
of the C = 0 configurations at t = 1000 in which informative signaling is
taking place belong to persisting cycles.6 As an example, figure 2 shows the

6By “persisting cycle” we refer to a pattern in which the frequencies of
types oscillate in an apparently stable manner. We have not, however, as-
sessed the stability of these patterns beyond observations of dynamics up to
t = 1000, and no conclusions should be drawn about nearby paths in the state
space.
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evolution of mutual information corresponding to a simulation based on the
game in Table 3: very quickly, in a couple of hundred generations, the mutual
information between states and acts enters a persisting cycle between 0.67 and
0.69 bits.

S1 S2 S3
A1 31, 7 0, 95 57, 26
A2 5, 71 99, 1 15, 62
A3 17, 66 62, 23 28, 48

Table 3: A C = 0 game with persistently cyclical information exchange.

Figure 2: A C = 0 game evolving to cyclic communicative behavior.

Some other C = 0 games did not give rise to cycles, by t = 1000, but instead
appeared to generate a chaotic dynamical regime. Results of this kind have
also been found in a dynamic model of a Lewis signaling game by Wagner
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(2012). Wagner used a stronger criterion for complete conflict of interest than
C = 0 (he understood complete conflict of interest to exist only in constant
sum games). Some of our simulations (such as the one corresponding to figure
3 and Table 4) often show communication at signaling-system levels. That
is, the very incompatible preference rankings of sender and receiver can still
sustain simulations in which the sender is, roughly half of the time, perfectly
informative about the state of the world, and the receiver perfectly mindful of
this information.7

S1 S2 S3
A1 61, 28 14, 82 6, 74
A2 11, 87 49, 58 7, 49
A3 22, 71 21, 80 90, 38

Table 4: A C = 0 game with apparently chaotic orbits, in which information
is often exchanged at signaling-system levels.

The signaling system that keeps recurring in the simulation corresponding to
figure 3 is described in Table 5: the sender is perfectly informative, and the
receiver exploits this to their benefit, and the sender’s detriment – although
the receiver does not carry the exploitation to the fullest extent; see below.

M1 M2 M3
S1 1 0 0
S2 0 1 0
S3 0 0 1

A1 A2 A3
M1 0 0 1
M2 0 1 0
M3 1 0 0

Table 5: The sender-receiver configuration in the signaling systems in figure 3.

What is sustaining informative signaling at C = 0 in these two kinds of cases
(periodic orbits on the one hand, apparently chaotic orbits on the other)?
There appears to be a main pattern in all of them: given that sender’s and
receiver’s preferences are exactly reversed, the receiver would generally like
to exploit any information in the messages sent by the sender – that is, use
it to act in a way beneficial to them but detrimental to the sender. But any
exploitation by the receiver will have to involve letting its behavior be guided

7In the simulation presented in figure 3, this behavior persists at least until
t = 60000. We do not know wheter communication collapses at some later
point.

13



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

Figure 3: One evolution of mutual information between states and acts for the
game presented in Table 4.
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by the messages sent by the sender. This means the sender can exploit their
attempted exploitation, by re-mapping states to signals in a way beneficial to
them but detrimental to the receiver.

Godfrey-Smith (2013) describes one very simple kind of evolution that obeys
this pattern: in a C = 0 game, if a sequential best-response regime is in place
(the sender’s strategy at t is the best response to the receiver’s strategy at t− 1
which, in turn, is the best response to the sender’s strategy at t− 2, etc.) and
the sender kicks off the process by sending fully informative signaling (i. e., by
using a strategy that is a bijection between S and M) then at any given time,
the sender is mapping states to messages 1-to-1, and the receiver mapping
messages to acts 1-to-1. Every configuration is a signaling system, but not as
a result of good will: they are taking turns to exploit each other.

The persisting cycles in our C = 0 sample also appear to conform to this se-
quential exploitation pattern. Consider again the game in Table 3. Figure 4 is
a fine-grained representation of the evolution of sender and receiver frequen-
cies for the particular simulation that generated the results shown in figure 2;
figure 2 shows change in mutual information while figure 4 shows change in
the frequencies of the underlying behaviors.

Figure 4: Evolution of frequencies in a persisting cycle for the game in Table
3
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In what follows, we use S[M N O] as an abbreviation of the pure sender strat-
egy consisting in sending (only) message M in S1, message N in S2, and mes-
sage O in S3. R[P Q R] stands for the pure receiver strategy that consists of
doing (only) act P in response to M1, act Q in response to M2, and act R in
response to M3.

In the cycle, represented in figure 4, the only two types with nonzero frequen-
cies in the receiver population are R[1 3 3] and R[2 3 3]. That is, the receiver
always responds to M2 and M3 with A3, and mixes A1 and A2 in response
to M1. The sender strategies with highest frequency are S[2 1 1] and S[2 2 1].
That is, the population mostly contains strategies that always send M2 in S1
and M1 in S3, but the strategies differ in how they respond to S2, with the
result that there is a population-wide mixing of M1 and M2 in response to
that state. There is a small proportion of senders (below 10%) doing S[2 3 1]
and S[3 1 1].

The frequencies of types R[1 3 3] and R[2 3 3] in the receiver’s population
change at the same rate as the proportions of S[2 1 1] and S[2 2 1] in the
sender’s population, only with a lag of approximately 3 time units. Here is
what is going on: when the proportion of M1 sent by the sender in S2 falls,
M1 becomes more informative about S3. In that case, the receiver wants to
respond to M1 with A2, which secures the highest payoff for the receiver in
S3 (and is exploitative, insofar as the sender is then stuck with the lowest
payoff in S3). Consequently, the frequency of the R[2 3 3] type increases in
the receiver population. As this frequency increases, the strategy consisting of
sending M1 in S2 becomes more attractive for the sender (the pair S2/A2 has
a very high payoff for them), and thus S[2 1 1] increases its frequency. Which
again brings the frequency of R[1 3 3] up, etc.

Sender and receiver populations are thus launched in a cycle of sequential
exploitation, but this is not all that is going on. For example, M1 is, through-
out, never sent in S1. This gives a substrate of more cooperative and stable
communication to the regime of attempted mutual exploitation: throughout
the process, the receiver, when confronted with M1 can rest assured that S1 is
not the case. Apparently, then, these cases should be understood in terms of
a pair of phenomena, one cooperative and one non-cooperative. We outlined
the role of exploitation above; here we will briefly attempt to characterize the
second phenomenon, which involves a subtle form of cooperation. A sender
and receiver can be seen as transforming, by means of mixed strategies, one
game into another. Suppose that a sender sends M1 always in S1, mixes M1
and M2 in S2, and never sends M1 in S3. Then when the sender sends M1,
they confront the receiver with an “uncertainty bundle”8 that is partly com-

8We owe the “bundle” metaphor to Carl Bergstrom, and are grateful to
both Bergstrom and Elliott Wagner for suggesting many of the outlines of the
analysis given in these paragraphs. Rohit Parikh used a similar strategy in a
treatment of the Crawford-Sobel model in an unpublished talk at the CUNY
Graduate Center, October 2014.
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prised of S1 and partly comprised of S2. The sender can be seen as giving the
receiver perfect information about a bundle, rather than imperfect informa-
tion about the “raw” state. A receiver, too, can create a bundle. When the
receiver mixes A1 and A2, for example, in response to a given message, they
present the sender with a bundle of acts that the sender must treat as a unit
when they determine when to send that message.

Suppose, then, we revisit the game in Table 3 and consider the situation that
obtains when the sender and receiver are following, for example, the strategies
given in Table 6, which happen halfway through figure 4. We can redescribe
this situation as one in which the sender is being perfectly informative about
three “uncertainty bundles” they have constructed. The new “game” is shown
in Table 7, where SMi stands for the bundle of states that the sender is pre-
senting with message Mi. Here, sender and receiver agree on the worst act
(the worst “raw” act, not the worst bundle of acts) possible in each state,
and the new value of C is 0.66. Further, though, we can treat the receiver as
creating bundles of acts: they are offering a new “act”, AM1 , which roughly
consists of one third of A1 and two thirds of A2, and withdrawing access to
the pure A1 or A2. If we re-interpret the game as transformed by both the
sender’s and receiver’s bundling, we reach the payoff matrices shown in Ta-
ble 8. This is now a “game” with complete common interest: both sender
and receiver prefer AM1 in SM1 , and AM2/3 (the old A3) in the other two
state bundles. Because this “game” can be transformed again by either player
changing their behaviors, and hence their bundling, the existence of common
interest here does not have the same role that it has in an underlying game
that acts as a fixed constraint. But we think that this description in terms of
bundling may yield some understanding of how communication can arise in
these apparently unlikely contexts.

S1 S2 S3
M1 0 0.44 1
M2 0.92 0.51 0
M3 0.08 0.05 0

M1 M2 M3
A1 0.36 0 0
A2 0.64 0 0
A3 0 1 1

Table 6: One sender-receiver configuration in the cycle represented in figure 4

It is more difficult to provide an intuitive description of what it is that forces
senders and receivers into their behavior in the chaotic regimes that some-
times emerge in the game presented in table 4. A common pattern in the
emergence of signaling systems in these regimes is quasi-periodic behavior in
both sender and receiver, with two similar, but off-sync, “periods”. For exam-
ple, from t = 600 to t = 620 in the simulation corresponding to figure 3, the
sender alternates S[2 1 1] with S[1 2 3]. Meanwhile, the receiver alternates R[3
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SM1 SM2 SM3

A1 39.58, 47.08 19.94, 38.38 19.08, 40.85
A2 40.67, 43.36 38.52, 46.03 41.15, 44.08
A3 38.39, 40.36 33.04, 50.66 34.31, 49.46

Table 7: The game in Table 3, as rebundled by the sender.

SM1 SM2 SM3

AM1 40.28, 44.70 31.84, 43.28 33.21, 42.91
AM2/3 38.39, 40.36 33.05, 50.66 34.31, 49.46

Table 8: The game in Table 3, as rebundled by sender and receiver.

2 1] with R[1 2 2]. As the sender’s “cycle” is out of sync with the receiver’s,
all four combinations occur: S[2 1 1] and R[3 2 1]; S[1 2 3] and R[3 2 1]; S[2 1
1] and R[1 2 2]; S[3 2 1] and R[1 2 2]. The second among these combinations
is a signaling system. The other three are partially informative. Thus the 1.58
bits/0.91 bits alternation in figure 3 between t = 600 and t = 620.

In fact, by the time senders and receivers engage in this behavior, the frequen-
cies of most sender and receiver types is zero; in particular, the reason why
the receiver doesn’t respond to S[1 2 3] with R[2 1 1] is that this type is ex-
tinct by t = 600. The best the receiver can do is engage in signaling-system
behavior, with R[3 2 1]. What we see is sequential exploitation to the full
extent of their current capabilities. In the case we have been discussing, the
difference between frequencies that are very close to zero and those that are
effectively zero (below 2 · 10−308; see above) turns out to be very important:
as figure 5 shows, frequencies jump to extremely close to zero to extremely
close to one, and, if we round population frequencies so that every type with
frequency below 10−10 is declared extinct, signaling systems fail to appear.

The above analysis, in any case, only focuses on one particularly legible frag-
ment of the simulation. Most of what happens in the full run depends on
haphazard details of the population structure, as is bound to happen in ap-
parently chaotic behavior of this sort, and could not be convincingly labelled
as sequential explotation. The unpredictable alternation of quasi-periodic pat-
terns that can be noticed in a longer run is shown in figure 6, which presents
the evolution of the sender-receiver configurations to which the population
structures translates between t = 600 and t = 800.

As we have said, none of the C = 0 runs in our sample in which communica-
tion is maintained evolves towards a Nash equilibrium. In fact, in our sample,
the first case where there is evolution towards a Nash equilibrium happens at
C = 0.22. Somewhat surprisingly, the situation appears to be at follows. On
one side, we have anecdotal evidence to the effect that when a C = 0 game
does have a Nash equilibrium in which communication is maintained, then it
is very likely that some initial population frequencies will lead to persisting
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Figure 5: Detail of the evolution of populations corresponding to figure 3,
between t = 600 and t = 620.
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Figure 6: Evolution of sender-receiver configurations corresponding to figure 3,
between t = 600 and t = 800.
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communication: in all of the 24 such games we have found in the random sam-
pling prepared for this and our previous paper, the replicator dynamics will
take some initial conditions to a state at t = 1000 in which communication
does then persist. On the other side, in no case that we have found there is
evolution towards the Nash equilibrium itself.

5 Conclusions

This paper describes the results of a dynamic analysis of the role of common
interest in the evolution of communication in a three-state Lewis signaling
game. We find a strong predictive role for common interest, as measured by
C: in a large random sample of games, the proportion of evolutionary simula-
tions in which communication was maintained at t = 1000 was monotonically
associated with C. The results presented here complement those in an earlier
paper (Godfrey-Smith and Mart́ınez 2013) which gave a purely static analy-
sis of games of this kind, also using C as a measure of common interest. The
two sets of results are broadly consistent and complementary; each approach
provides a different perspective on these systems.

First, an analysis using Nash equilibria can be used to give a coarse-grained
description of a range of systems which operate under different dynamical
regimes, and also cases involving human choice where no well-defined “dy-
namic” may exist at all. The replicator-dynamic model, on the other hand,
gives a much finer-grained representation of systems to which it applies, and
has been shown to be informative about systems that follow a somewhat dif-
ferent dynamic, as well (Bendor and Swistak 1998).

Our work here also uncovers phenomena that involve cycling and apparently
chaotic behaviors. We offered an initial analysis of these outcomes in terms
of a combination of sequential exploitation and the transformation of games
through “uncertainty bundling,” but this last analysis was offered briefly, as
a first foray; clearly much more work remains to be done on the interaction
between common interest and evolutionary dynamics in signaling games.
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Appendices

A Replicator-Mutator Dynamics

In the main text, communication evolution has been shown to depend on C
in simulations in which evolution is governed by the two-population replicator
dynamics in continuous time. A very similar situation is observed if, instead,
we let populations evolve according to the two-population replicator-mutator
dynamics. In this alternative, the rate of change of the frequency of a cer-
tain type depends not just on how well it does compared to the average in
its population, but also on a mutation matrix, M , each member Mij of which
gives the probability that an individual of type i changes its type to j. The
differential equations for the replicator-mutator dynamics are, thus, as follows:

ẋi =
∑
j

(xjMjiπ
σ
i )− xiπσ (A1)

ẏi =
∑
j

(yjMjiπ
%
i )− yiπ

% (A2)

In our simulations we have used a mutation matrix according to which types
“breed true” with high probability, and mutate equiprobably to every other
type. That is, for a population of 27 pure-strategist types (such as the sender
and receiver populations in our model), M is of the following form (with m =
0.005):

23



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

M =


1−m m

26 · · · m
26

m
26 1−m · · · m

26
...

...
. . .

...
m
26

m
26 · · · 1−m


Again here, the proportion of simulations that show evolution to communica-
tion increase monotonically and smoothly with C. See figure A1.

Figure A1: Proportion of simulations in which communication evolves per
value of common interest. Populations evolve according to the replicator-
mutator dynamics

One important difference between the replicator and replicator-mutator re-
sults is that, in the latter, no simulation in the C = 0 group presents evo-
lution to communication. It should be noted, though, that M is such that
everything mutates to everything else; the net effect of this mutation is the
introduction of a certain amount of “noise” which, among other things, pre-
vents type frequencies from dropping below m

26 . Whether communication at
C = 0 would be possible in the presence of a more structured mutation matrix
remains to be seen.
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B Other Implementation Details

We have implemented our simulations in custom scripts relying on the Python
scientific stack: Python 3.4.2, NumPy 1.9.1, and SciPy 0.15.1. The systems
of ordinary differential equations were solved using the scipy.integrate.odeint
solver, which, in its turn, calls the LSODA solver of the ODEPACK library
(see http://www.netlib.org/odepack/opkd-sum for details). Whenever this
solver failed, our scripts fell back to the implementation of the Dormand-
Prince method (Dormand and Prince 1980) provided by scipy.integrate.ode.
Figures were prepared with matplotlib 1.4.3. Our scripts are published under
the GPL license at https://github.com/manolomartinez/signal.

The random sampling of population starting points followed the 27-dimensional
flat Dirichlet distribution, calculated using the NumPy implementation avail-
able in numpy.random.dirichlet().
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